\(A=3+3^2+3^3+...+3^{100}\)
\(\Rightarrow3A=3^2+3^3+3^4+...+3^{101}\)
\(\Rightarrow2A=3^{101}-3\)
Ta có:
\(2A+3=3n\)
\(3^{101}-3+3=3n\)
\(3^{101}=3n\)
\(n=3^{101}:3\)
\(n=3^{100}\)
\(3A=3^2+3^3+3^4+....+3^{101}\)
\(3A-A=\left(3^2+3^3+3^4+...+3^{101}\right)-\left(3+3^2+3^3+3^4+....+3^{100}\right)\)
\(2A=3^{101}-3\)
\(A=\frac{3^{101}-3}{2}\)
thay \(A=\frac{3^{101}-3}{2}\)vào 2A + 3 = 3n ta được
\(2.\frac{3^{101}-3}{2}+3=3n\)
\(3^{101}-3+3=3n\)
\(3^{101}=3n=>n=3^{101}:3=3^{100}\)