\(A=3+3^2+........+3^{60}\)
\(3A=3.\left(3+3^2+......+3^{60}\right)\)
\(3A=3^2+3^3+.....+3^{61}\)
\(3A-A=\left(3^2+3^3+.......+3^{61}\right)-\left(3+3^2+.....+3^{60}\right)\)
\(2A=3^{61}-3\)
\(A=\left(3^{61}-3\right):2\)
Ta có: A= 3+3^2+3^3+3^4+...+3^60
\(\Rightarrow\)3A= 3^2+3^3+3^4+...+3^60+3^61
\(\Rightarrow\)3A-A= (3^2+3^3+3^4+...+3^60+3^61 )- (3+3^2+3^3+3^4+...+3^60)
\(\Rightarrow\)2A= 3^61-3
\(\Rightarrow\)A= \(\frac{3^{61}-3}{2}\)
NHớ k cho mk nhá