\(A=2+2^2+2^3+...+2^{99}+2^{100}\)
\(\Rightarrow2A=2^2+2^3+2^4+...+2^{100}+2^{101}\)
\(\Rightarrow A=2^{101}-2\)
\(\Rightarrow A+2=2^{101}-2+2\)
\(\Rightarrow A+2=2^{101}\)
\(A=2+2^2+2^3+...+2^{100}\)
\(\Rightarrow2A=2.\left(2+2^2+2^3+...+2^{100}\right)\)
\(\Rightarrow2A=2^2+2^3+2^4+...+2^{101}\)
\(\Rightarrow2A-A=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2+2^2+2^3+...+2^{100}\right)\)
\(\Rightarrow A=2^{101}-2\)
\(\Rightarrow A+1=2^{101}-2+2\)
\(\Rightarrow A+2=2^{101}\)
Vậy A+2=2101