TA có:VÌ 2= 2^1
A=\(2^1+2^2+2^3+...+2^{60}\)
A= \(\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
A= \(2\left(1+2\right)+2^3\left(1+2\right)+...2^{59}\left(1+2\right)\)
A= \(3.\left(2+2^3+...+2^{60}\right)\)chia hết cho 3
=) A chia hết cho3( đpcm)
Ta lại có:
A= \(2^1+2^2+2^3+...+2^{60}\)
A= \(\left(2^1+2^2+2^3\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
A=\(2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
A= \(7.\left(2+...+2^{58}\right)\)chia hết cho 7
=) A chia hết cho 7( đpcm)