\(2a=2.\left(2+2^2+...+2^{100}\right)\)
\(2a=2^2+2^3+...+2^{101}\)
\(2a-a=\left(2^2+2^3+...+2^{101}\right)-\left(2^1+2^2+...+2^{100}\right)\)
\(2a-a=2^{101}-2\)
mà \(2a-a=2^x-2=>x=101\)
\(a=2+2^2+2^3+...+2^{100}\)
\(\Rightarrow2a=2^2+2^3+2^4+....+2^{101}\)
\(2a-a=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2+2^2+2^3+...+2^{100}\right)\)
\(a=2^{101}-2\)
\(\Rightarrow2a=2\left(2^{101}-2\right)\)
\(2a-a=2^x-2\)
\(\Leftrightarrow2^x-2=2^{101}-2\)
\(\Leftrightarrow x=101\)
ta có: A = 2 + 22 + 23 + ...+ 2100
=> 2A = 22 + 23 + 24 +...+2101
Tìm x:
2.a - a = 2x-2
a.(2-1) = 2x-2
a = 2x-2