Ta có : \(A>\frac{1}{3^2}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{50.51}\)
\(\rightarrow A>\frac{1}{9}+\frac{1}{4}-\frac{1}{4}+\frac{1}{5}-\frac{1}{5}+...+\frac{1}{50}-\frac{1}{50}-\frac{1}{51}\)
\(\rightarrow A>\frac{1}{4}+\left(\frac{1}{9}-\frac{1}{51}\right)\)
Xét : \(\frac{1}{9}-\frac{1}{51}>0\rightarrow A>\frac{1}{4}\left(đpcm\right)\)