\(A=1+11+...+11^9\)
\(11A=11+11^2+...+11^{10}\)
\(11A-A=\left(11+11^2+...+11^{10}\right)-\left(1+11+...+11^9\right)\)
\(10A=11^{10}-1\)
Ta có lũy thừa của 11 luôn có dạng ...1
=> 1110 - 1 có dạng ...0 chia hết cho 5 ( đpcm )
\(11A=11.\left(11^9+11^8+11^7+...+11+1\right)\)
\(11A-A=11^{10}+11^9+11^8+...+11^2+11\)
\(10A=\left(11^{10}+11^9+11^8+...+11^2+11\right)-\left(11^9+11^8+11^7+...+11+1\right)\)
\(10A=11^{10}-1\)
\(A=\frac{11^{10}-1}{10}\)
11^10 có CSTC là 1=>11^10-1 có CSTC là 0
\(=>\frac{11^{10}-1}{5}⋮5=>A⋮5\)
\(A=11^9+11^8+11^7+...+11+1\)\(\)
\(\Rightarrow11A=11^{10}+11^9+11^8+...+11^2+11\)
\(\Leftrightarrow11A-A=\left(11^{10}+11^9+11^8+...+11^2+11\right)-\left(11^9+11^8+11^7+...+11+1\right)\)
\(\Rightarrow10A=11^{10}-1\)
\(\Rightarrow A=\left(11^{10}-1\right):10\)
Ta thấy 11\(^{10}\)có tận cùng là 1
=> 11\(^{10}\)-1 có tận cùng là 0
\(\Leftrightarrow\)(11\(^{10}\)-1):10 có tận cùng là 0
\(\Rightarrow\left(11^{10}-1\right):10⋮5\)
\(\Leftrightarrow A⋮5\left(đpcm\right)\)
Ta có A=119+118+117+....+11+1
=> 11A=1110+119+118
\(A=11^9+11^8+11^7+...+11+1\)
\(\Rightarrow11A=11^{10}+11^9+11^8+...+11^2+11\)
\(\Rightarrow11A-A=\left(11^{10}+11^9+...+11^2+11\right)-\left(11^9+11^8+...+11+1\right)\)
\(\Rightarrow10A=11^{10}-1\)
\(\Rightarrow A=\left(11^{10}-1\right)\div10\)
Ta thấy: \(11^{10}\) có tận cùng là \(1\Rightarrow11^{10}-1\)có tận cùng là \(0\Rightarrow\left(11^{10}-1\right)\div10\) có tận cùng là \(0\)chia hết cho \(5\)
Vậy \(A⋮5\)