\(9A=9+1+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)
\(9A-A=\left(9+1+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)-\left(1+\frac{1}{3^2}+...+\frac{1}{3^{100}}\right)\)
8A= 9-\(\frac{1}{3^{100}}\)
vậy => n=100
\(9A=9+1+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)
\(9A-A=\left(9+1+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)-\left(1+\frac{1}{3^2}+...+\frac{1}{3^{100}}\right)\)
8A= 9-\(\frac{1}{3^{100}}\)
vậy => n=100
cho A =1/1+1/3^2+1/3^4+...+1/3^100. Biet 8A=9-1/3^n.tim n?
cho A =1/1+1/3^2+1/3^4+...+1/3^100. Biet 8A=9-1/3^n.tim n?
A=1+1/3^2+1/3^4+...+1/3^100 tìm n để 8A = 9 - 1/3^n
Cho A=1+1/3^2+1/3^4+...+1/3^100. Biết 8A=9-1/3^n
Giúp mình nhanh với, thanks
Cho A = 1+1/32+1/34+....+1/3100.. Biết 8A= 9-1/3n. Tìm n?
cho A = 1 + 1/32 + 1/34 + . . . 1/3100. Biết 8A = 9 - 1/3n. Vậy n =
cho A = 1 + 1/32 + 1/34 + . . . 1/3100. Biết 8A = 9 - 1/3n. Vậy n =
Cho A=1+1/3^2+...+1/3^100
Biết 8A=9-1/3.n Tìm n
Cho A=1+1/3^2+...+1/3^100
Biết 8A=9-1/3.n Tìm n