\(4A=4+4^2+...+4^{100}\)
\(4A-A=\left(4+4^2+...+4^{100}\right)-\left(1+4+...+4^{99}\right)\)
\(3A=4^{100}-1\)
\(A=\frac{4^{100}-1}{3}< \frac{4^{100}}{3}=B\left(đpcm\right)\)
A = 1 + 4 + 4^2 + 4^3 + ....+ 4^99
4A = 4 + 4^2 + 4^3 + ..... + 4^100
4A - A = ( 4 + 4^2 + 4^3 + ..... + 4^100 ) - ( 1 + 4 + 4^2 + 4^3 + .... + 4^99 )
3A = 4^100 - 1
A = 4^100 - 1 /3 < 4^100/3
Vậy A < B/3