Trong mặt phẳng tọa độ Oxy, cho các điểm A(1;-1), A’(2;0) và B(0;1), B’(-2;1). Phép quay tâm I(a;b) biến A thành A' và biến B thành B'. Tính P=a.b
A. -2
B. 1
C. 4
D. 3
CH 1.Trong không gian Oxyz ; Cho 3 điểm: A(-1; 1; 4) , B(1;- 1; 5) và C(1; 0; 3), toạ độ điểm D để ABCD là một hình bình hành là: A. D(-1; 2; 2) C. D(-1;-2 ; 2) D. D(1; -2; -2)
CH 2.Trong không gian Oxyz cho 2 điểm A (1;–2;2) và B (– 2:0;1). Toạ độ điềm C nằm trên trục Oz để A ABC cân tại C là : A. C(0;0;2) C. C(0;–1;0) B. D(1; 2; -2) В. С(0,:0,-2) D. C( ;0;0)
CH 3. Trong không gian Oxyz cho 2 vectơ a =(1; 2; 2) và (1; 2; -2); khi đó : ¿(i+6) có giá trị bằng : С. 4 A. 10 В. 18 D. 8
CH 4.Trong không gian Oxyz cho 2 vecto a= (3; 1; 2) và b= (2; 0; -1); khi đó vectơ 2a-b có độ dài bằng : А. 3/5 В. 29 С. M D. S/5
CH 5. Cho hình bình hành ABCD với A (-1;0;2), B(3;4;0) D (5;2;6). Tìm khẳng định sai. A. Tâm của hình bình hành có tọa độ là (4;3;3) B. Vecto AB có tọa độ là (4;-4;-2) C. Tọa độ của điểm C là (9;6;4) D. Trọng tâm tam giác ABD có tọa độ là (3;2;2)
Trong mặt phăng Oxy, cho phép biến hình f xác định như sau. Với mỗi M (x; y), ta có M' = f (M) sao cho M'(x';y') thỏa mãn x' = x, y' = ax + by, với a, b là các hằng số thực. Khi đó a và b nhận giá trị nào trong các giá trị sau đây thì f trở thành phép biến hình đồng nhất?
Câu 1:Cho mặt phẳng (P) đi qua hai điểm A(3; 1; -1), B(2; -1; 4) và vuông góc với mặt phẳng (Q): 2x –y + 3z –1 = 0. Phương trình nào dưới đây là phương trình của (P)?A. 13 5 5 0x yz− − +=B. 13 5 5 0x yz+ − +=C. 13 5 5 0x yz− + +=D. 13 5 12 0x yz− −+=Câu 2:Cho mặt cầu (S):()()2223 5 9.x yz− ++ +=Tọa độ tâm I của mặt cầu là:A. ()3;5;0IB. ()3; 5;0I−C. ()3;5;0I−D. ()3; 5;0I−−Câu 3:Chomặt phẳng (): 60xyzα++−=. Điểm nào dưới đây không thuộc ()α?A. (2;2;2)MB. (3;3;0)NC. (1;2;3)Q.D. (1; 1;1)P−Câu 4:Cho 3 điểm A(2; 2; -3), B(4; 0;1), C(3; -2;-1). Khi đó tọa độ trọng tâm G của tam giác ABC là:A. G(3; 0; -1).B. G(-3; 0; 1).C. G(3; 0; 0).D. G(3; 0; 1).Câu 5:Cho mặt cầu ()2 22:( 3) ( 2) ( 1) 100Sx y z− ++ +− =và mặt phẳng ():2 2 9 0x yzα− −+=. Mặt phẳng ()αcắt mặt cầu ()Stheo một đường tròn ()C. Tính bán kính rcủa ()C.A. 6r=.B. 3r=.C. 8r=.D. 22r=.
Trong không gian Oxyz cho A(1;-1;2), B(-2;0;3), C(0;1;-2). M(a;b;c) là điểm thuộc mặt phẳng (Oxy) sao cho biểu thức S = M A → . M B → + 2 M B → . M C → + 3 M C → . M A → đạt giá trị nhỏ nhất. Khi đó T = 12 a + 12 b + c có giá trị là
A. T = -1
B. T = 3
C. T = -3
D. T = 1
Trong không gian Oxyz, cho A(1;-1;2),B(-2;0;3),C(0;1;-2). Gọi M(a;b;c) là điểm thuộc mặt phẳng (Oxy) sao cho biểu thức S = M A → . M B → + 2 M B → . M C → + 3 M C → . M A → đạt giá trị nhỏ nhất. Khi đó T=12a+12b+c có giá trị là
A. T=3
B. T=-3
C. T=1
D. T=-1
Trong không gian với hệ tọa độ Oxyz cho A (1; 2; -3), B (3/2; 3/2; -1/2), C (1; 1; 4), D (5; 3; 0). Gọi (S1) là mặt cầu tâm A bán kính bằng 3, (S2) là mặt cầu tâm B bán kính bằng 3/2. Có bao nhiêu mặt phẳng tiếp xúc với 2 mặt cầu (S1), (S2) đồng thời song song với đường thẳng đi qua 2 điểm C, D.
A. 1
B. 2
C. 4
D. Vô số.
Trong không gian Oxyz, cho hai điểm A (0; 8; 2), B (9; -7; 23) và mặt cầu (S) có phương trình (S): (x - 5)2 + ( y + 3 )2 + (z + 2)2 = 72. Mặt phẳng (P): x + by + cz + d = 0 đi qua điểm A và tiếp xúc với mặt cầu (S) sao cho khoảng cách từ B đến mặt phẳng (P) lớn nhất. Giá trị của b + c + d khi đó là:
A. b + c + d = 2
B. b + c + d = 4
C. b + c + d = 3
D. b + c + d = 1
Trong không gian tọa độ Oxyz cho A (1; 1; -1), B (2; 3; 1), C (5; 5; 1). Đường phân giác trong góc A của tam giác ABC cắt mặt phẳng (Oxy) tại M (a; b; 0). Tính 3b-a.
A. 6.
B. 5.
C. 3.
D. 0.