\(a+1=1\Rightarrow a=0\)
Ta có:
\(A=\left(a+b\right)^3+3ab\left(a^2+b^2+2ab\right)-6a^2b^2+6a^2b^2\left(a+b\right)\)
\(A=\left(a+b\right)^3+3ab\left(a+b\right)^2+6a^2b^2\left(a+b-1\right)\)
Thay \(a=0\), ta có:
\(A=b^3\)
Sửa đề: \(a+b=1\)
\(A=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\left(a+b\right)\)
\(=1.\left[\left(a+b\right)^2-3ab\right]+3ab\left(1^2-2ab\right)+6a^2b^2.1\)
\(=-3ab-6a^2b^2+6a^2b^2\)
\(=-3ab\)