tim gia tri max va min cua a√a+b√b voi √a+√b=√2
Cho 0<=a;b;c<=4 va a+b+c=6
Tim MAX cua P=a^2+b^2+c^2+ab+bc+ca
a,Cho a,b,c duong va \(a^2+b^2+c^2\)=3. Tim Min cua P= \(\frac{a^3}{\sqrt{b^2+3}}+\frac{b^3}{\sqrt{c^2+3}}+\frac{c^3}{\sqrt{a^2+3}}\)
b,Cho x,y,z>0 va x+y+z=6. C/m \(8^x+8^y+8^z\ge4^{x+1}+4^{y+1}+4^{z+1}\)
cho |a+b|+|b+c|+|c+a|=8 tim max min cua a\(^2\)+b\(^2\)+c\(^2\)
cho a,b # 0 va \(\left(a+b\right)ab=a^2+b^2-ab\)
Tim MAX \(P=\frac{1}{a^3}+\frac{1}{b^3}\)
cho a>0,b>0 thoa man a+b lon hon hoac bang 2 .tim max cua M =1/a+b^2 +1/b+a^2
cho a,b,c > 0 va abc =1 tim max
\(\frac{a}{b^2+c^2+a}+\frac{b}{c^2+a^2+b}+\frac{c}{a^2+b^2+c}\)
Cho 2 so thuc a va b thoa màn a>b va ab=4. Tim GTNN cua bieu thuc P=(a2+b2+ 1):(a-b)
moi nguoi oi giup em may cau nay voi
1) Cho \(\hept{\begin{cases}a,b,c,d\ge0\\a+b+c+d\le3\end{cases}}\)tim max \(P=2a+3b^2+4b^3+5b^4\)
2) Cho \(\hept{\begin{cases}a,b,c\ge0\\a+b+c=3\end{cases}}\)tim min \(P=\left(a-1\right)^3+\left(b-1\right)^3+\left(c-1\right)^3\)
3) Cho \(\hept{\begin{cases}a,b\ge0;0\le c\le1\\a^2+b^2+c^2=3\end{cases}}\) tim max,min \(P=ab+bc+ca+3\left(a+b+c\right)\)
4) Cho \(\hept{\begin{cases}a,b,c\ge0\\a+b+c=3\end{cases}}\)tim max \(P=a\sqrt{b}+b\sqrt{c}+c\sqrt{a}-\sqrt{abc}\)
5) Cho \(\hept{\begin{cases}a,b\ge0;0\le c\le1\\a+b+c=3\end{cases}}\)tim max, min \(P=a^2+b^2+c^2+abc\)
em cam on nhieu