Theo bài ta có :
\(a_1;a_2;a_4\ne0\) thỏa mãn \(\left\{{}\begin{matrix}a_2^2=a_1.a_3\\a^2_3=a_2.a_4\end{matrix}\right.\)
Ta có :
\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}\)
\(\Leftrightarrow\dfrac{a_1^3}{a_2^3}=\dfrac{a_2^3}{a_3^3}=\dfrac{a_3^3}{a_4^3}=\dfrac{a_1}{a_2}.\dfrac{a_2}{a_3}.\dfrac{a_3}{a_4}=\dfrac{a_1}{a_4}\) \(\left(1\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\Leftrightarrow\dfrac{a_1^3}{a_2^3}=\dfrac{a_2^3}{a_3^3}=\dfrac{a_3^3}{a_4^3}=\dfrac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{a_1^3+a_2^3+a_3^3}{a_2^3+a_3^3+a_4^3}=\dfrac{a_1}{a_4}\)
\(\Leftrightarrowđpcm\)
\(\left\{{}\begin{matrix}a^2_2=a_1.a_3\\a^2_3=a_2.a_4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a_2.a_2=a_1.a_3\\a_3.a_3=a_2.a_4\end{matrix}\right.\)
\(\Rightarrow\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3};\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}\)
\(\Rightarrow\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}=\dfrac{a_1.a_2.a_3}{a_2.a_3.a_4}=\dfrac{a_1}{a_4}\left(1\right)\)
\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}\Rightarrow\dfrac{a^3_1}{a^3_2}=\dfrac{a^3_2}{a^3_3}=\dfrac{a_3^3}{a^3_4}=\dfrac{a^3_1+a^3_2+a^3_3}{a^3_2+a^3_3+a^3_4}\)
Từ \(\left(1\right);\left(2\right)\Rightarrow\dfrac{a^3_1+a^3_2+a^3_3}{a^3_2+a^3_3+a^3_4}=\dfrac{a^1}{a^4}\)
\(\rightarrowđpcm\)