Cho 4 số khác 0: a1,a2,a3,a4 thỏa mãn:a22=a1.a3 và a32=a2.a4.Chứng minh:\(\frac{a1^3+a2^3+a3^3}{a2^3+a3^3+a4^3}=\frac{a1}{a4}\)
Cho 4 số khác 0 là a1;a2;a3;a4 thỏa mãn a2^2= a1.a3 ; a3^2=a2.a4. Chứng minh rằng: a1^3+a2^3+a3^3 / a2^3+a3^3+a4^3= a1 / a4
Cho 4 số khác ko : a1 ; a2 ; a3 ; a4 thỏa mãn
a2^2 = a1.a3 ; a3^2 = a2.a4
CMR :a1^3+a2^3+a3^3/a2^3+a3^3+a4^4 =a1/a4
cho dãy tỉ số bằng nhau: a1/a2=a2/a3=a3/a4=.....=a2017/a2018 và a1/a2018= -5^2017. biết a2+a3+a4+....+a2018 khác 0. khi đó giá trị của biểu thức:
S= a1+a2+a3+...+a2017/a2+a3+a4+...+a2018
Cho 4 số khác 0 : a1,a2,a3,a4
thỏa mãn : a2^2 = a1.a3
a3^2=a2.a4
CMR : \(\frac{a1}{a4}=\frac{a1^3+a2^3+a3^3}{a2^3+a3^3+a4^3}\)
cho a1/a2=a2/a3=a3/a4=...=a9/a1 và a1+a2+a3+a4+...+a9 khác 0.biết a1=5.vậy a5=?
Cho a1/a2=a2/a3=a3/a4=...=a9/a1 và a1+a2+a3+a4+...+a9 khác 0. Biết a1=5. Vậy a5=
Cho 5 số nguyên phân biệt a1 , a2 , a3 , a4 , a5 . Xét tích số sau :A=(a1-a2)(a1-a3)(a1-a4)(a1-a5)(a2-a3)(a2-a4)(a2-a5)(a3-a4)(a3-a5)(a4-a5).CMR A luôn chia hết cho 288
Cho a1 / a2 = a2/a3 = a3/a4 = .......=an/a1 và a1+a2+a3+..+an khác 0
Tính: a1^2 + a2^2 + a3^2 + ..........+an^2 / (a1+a2+a3+..+an)^2