Giả sử cả ba bđt đều đúng
Ta có a+b<c+da+b<c+d và ab+cd>(a+b)(c+d)ab+cd>(a+b)(c+d)
→ab+cd>(a+b)2≥4ab→ab+cd>(a+b)2≥4ab (BĐT Cauchy)
→cd≥3ab→cd≥3ab (1)(1)
-------
Ta có (a+b)cd<(c+d)ab(a+b)cd<(c+d)ab và (c+d)(a+b)<ab+cd(c+d)(a+b)<ab+cd
→(a+b)2.cd<(c+d)(a+b)ab<(ab+cd)ab→(a+b)2.cd<(c+d)(a+b)ab<(ab+cd)ab
Mà (a+b)2.cd≥4abcd(a+b)2.cd≥4abcd (BĐT Cauchy)
→(ab+cd)ab>4abcd→(ab+cd)ab>4abcd
→ab>3cd→ab>3cd (2)(2)
(1);(2)→ab+cd>4(ab+cd)→ab+cd<0:(1);(2)→ab+cd>4(ab+cd)→ab+cd<0:Mâu thuẫn với giả thiết a,b,c,da,b,c,d dương
→đpcmGiả sử cả ba bđt đều đúng
Ta có a+b<c+da+b<c+d và ab+cd>(a+b)(c+d)ab+cd>(a+b)(c+d)
→ab+cd>(a+b)2≥4ab→ab+cd>(a+b)2≥4ab (BĐT Cauchy)
→cd≥3ab→cd≥3ab (1)(1)
-------
Ta có (a+b)cd<(c+d)ab(a+b)cd<(c+d)ab và (c+d)(a+b)<ab+cd(c+d)(a+b)<ab+cd
→(a+b)2.cd<(c+d)(a+b)ab<(ab+cd)ab→(a+b)2.cd<(c+d)(a+b)ab<(ab+cd)ab
Mà (a+b)2.cd≥4abcd(a+b)2.cd≥4abcd (BĐT Cauchy)
→(ab+cd)ab>4abcd→(ab+cd)ab>4abcd
→ab>3cd→ab>3cd (2)(2)
(1);(2)→ab+cd>4(ab+cd)→ab+cd<0:(1);(2)→ab+cd>4(ab+cd)→ab+cd<0:Mâu thuẫn với giả thiết a,b,c,da,b,c,d dương
→đpcm
#)Giải :
Giải sử cả ba BĐT đều đúng
Ta có : a + b < c + d và ab + cd > ( a + b )( c + d )
=> ab + cd > ( a + b )2 ≥ 4ab ( BĐT Cauchy )
=> cd ≥ 3ab (1)
Ta có : ( a + b )cd < ( c + d )ab và ( c + d )( a + b ) < ab + cd
=> ( a + b )2 .cd < ( c + d )( a + b )ab < ( ab + cd )ab
Mà ( a + b )2 .cd ≥ 4abcd ( BĐT Cauchy )
=> ( ab + cd )ab > 4abcd
=> ab > 3cd (2)
Từ (1) và (2) => ab + cd > 4( ab + cd ) => ab + cd < 0 mâu thuẫn với giả thiết a,b,c,d
=> Không thể đồng thời xảy ra cả ba BĐT trên ( đpcm )