Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Mèo' s Karry' s

Cho 4 số dương a,b,c,d .

Chứng minh không thể đồng thời xảy ra các bđt sau :

1. a+b<c+d 

2. (a+b)(c+d) < ab+cd

3. (a+b)cd < (c+d)ab

tieuthu songngu
11 tháng 6 2019 lúc 21:14

Giả sử cả ba bđt đều đúng 

Ta có a+b<c+da+b<c+d và ab+cd>(a+b)(c+d)ab+cd>(a+b)(c+d)

→ab+cd>(a+b)2≥4ab→ab+cd>(a+b)2≥4ab (BĐT Cauchy)

→cd≥3ab→cd≥3ab  (1)(1)

-------

Ta có (a+b)cd<(c+d)ab(a+b)cd<(c+d)ab và (c+d)(a+b)<ab+cd(c+d)(a+b)<ab+cd

→(a+b)2.cd<(c+d)(a+b)ab<(ab+cd)ab→(a+b)2.cd<(c+d)(a+b)ab<(ab+cd)ab

Mà (a+b)2.cd≥4abcd(a+b)2.cd≥4abcd  (BĐT Cauchy)

→(ab+cd)ab>4abcd→(ab+cd)ab>4abcd

→ab>3cd→ab>3cd (2)(2)

(1);(2)→ab+cd>4(ab+cd)→ab+cd<0:(1);(2)→ab+cd>4(ab+cd)→ab+cd<0:Mâu thuẫn với giả thiết a,b,c,da,b,c,d dương

→đpcmGiả sử cả ba bđt đều đúng 

Ta có a+b<c+da+b<c+d và ab+cd>(a+b)(c+d)ab+cd>(a+b)(c+d)

→ab+cd>(a+b)2≥4ab→ab+cd>(a+b)2≥4ab (BĐT Cauchy)

→cd≥3ab→cd≥3ab  (1)(1)

-------

Ta có (a+b)cd<(c+d)ab(a+b)cd<(c+d)ab và (c+d)(a+b)<ab+cd(c+d)(a+b)<ab+cd

→(a+b)2.cd<(c+d)(a+b)ab<(ab+cd)ab→(a+b)2.cd<(c+d)(a+b)ab<(ab+cd)ab

Mà (a+b)2.cd≥4abcd(a+b)2.cd≥4abcd  (BĐT Cauchy)

→(ab+cd)ab>4abcd→(ab+cd)ab>4abcd

→ab>3cd→ab>3cd (2)(2)

(1);(2)→ab+cd>4(ab+cd)→ab+cd<0:(1);(2)→ab+cd>4(ab+cd)→ab+cd<0:Mâu thuẫn với giả thiết a,b,c,da,b,c,d dương

→đpcm

T.Ps
11 tháng 6 2019 lúc 21:22

#)Giải :

Giải sử cả ba BĐT đều đúng 

Ta có : a + b < c + d và ab + cd > ( a + b )( c + d )

=> ab + cd > ( a + b )2 ≥ 4ab ( BĐT Cauchy )

=> cd ≥ 3ab (1)

Ta có : ( a + b )cd < ( c + d )ab và ( c + d )( a + b ) < ab + cd 

=> ( a + b )2 .cd < ( c + d )( a + b )ab < ( ab + cd )ab

Mà ( a + b )2 .cd ≥ 4abcd ( BĐT Cauchy ) 

=> ( ab + cd )ab > 4abcd

=> ab > 3cd (2)

Từ (1) và (2) => ab + cd > 4( ab + cd ) => ab + cd < 0 mâu thuẫn với giả thiết a,b,c,d 

=> Không thể đồng thời xảy ra cả ba BĐT trên ( đpcm )


Các câu hỏi tương tự
Nguyễn Đức Huy
Xem chi tiết
nguyễn minh quý
Xem chi tiết
Nguyễn An
Xem chi tiết
Lê Nguyễn Hoàng Mỹ Đình
Xem chi tiết
Lê Minh Đức
Xem chi tiết
nguyenquoctinh
Xem chi tiết
VFF
Xem chi tiết
tống thị quỳnh
Xem chi tiết
Ngoc Anhh
Xem chi tiết