Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Mạnh Trung

Cho 3a+2b chia hết cho 17. Chứng minh rằng: 10a+b chia hết cho 17

Kẻ Dối_Trá
31 tháng 7 2016 lúc 17:15

 (10a+b) - (3a +2b) = 20a + 2b - 3a -2b

 = 17a 

Vì 17chia hết cho17=> 17a chia hết cho 17

 => 2.(10a+b)- (3a +2b) chia hết cho 17

 Vì 3a+2b chia hết cho 17 => 2(10a+b) chia hết cho 17

Mà (2,17) =1=> 10a+b chia hết cho 17

                  Vậy nếu 3a+2b chia hết cho 17 thì 10a +b chia hết cho 17

OoO_Cậu_Bé_Bảo_Bình_OoO
23 tháng 10 2017 lúc 12:34

Vậy số đó chia hết cho 17

k cho mk nha

nguyenvankhoi196a
6 tháng 11 2017 lúc 6:24

Câu trả lời hay nhất:  + ta chứng minh a,b,c có ít nhất một số chia hết cho 3 
giả sử cả 3 số trên đều không chia hết cho 3 
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1) 
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn 
Vậy có ít nhất 1 số chia hết cho 3 
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4 
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn 
vậy có ít nhất 1 số cgia hết cho 4 
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5) 
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3 
=> phải có ít nhất 1 số chia hết cho 5 
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60

nguyễn thị my na
19 tháng 12 2017 lúc 19:20

Có thế cũng hỏi. lên google bấn ra có bao nhiêu hay hơn không.Mấy ông mấy bà cũng chép trên đó thôi .^.^  ^.^


Các câu hỏi tương tự
Quang
Xem chi tiết
Nguyễn Đức Thành
Xem chi tiết
Sư Phụ Sơn Tùng 6a
Xem chi tiết
Đặng Hoàng Diệp
Xem chi tiết
Trịnh Thu Phương
Xem chi tiết
Nguyễn Bích Thùy
Xem chi tiết
nghia
Xem chi tiết
TRƯƠNG LINH GIANG
Xem chi tiết
Cá Mực
Xem chi tiết