Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Cô Gái Mùa Đông

Cho 3 số x,y,z thỏa mãn x+y+z=3 và x4+y4+z4=3xyz . Tính giá trị của M=x2018+y2019+z2020

Tran Le Khanh Linh
28 tháng 2 2021 lúc 11:12

Theo BĐT Cosi ta có: \(\hept{\begin{cases}\frac{x^4+y^4}{2}\ge\sqrt{x^4\cdot y^4}=x^2y^2\\\frac{y^4+z^4}{2}\ge\sqrt{y^4\cdot z^4}=y^2z^2\\\frac{z^4+x^4}{2}\ge\sqrt{z^4\cdot x^4}=x^2z^2\end{cases}\Rightarrow x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2}\)

chứng minh tương tự: \(x^2y^2+y^2z^2+z^2x^2\ge xy^2z+xyz^2+x^2yz\Leftrightarrow x^2y^2+y^2z^2+x^2z^2\ge xyz\left(x+y+z\right)\)

\(\Leftrightarrow x^2y^2+y^2z^2+x^2z^2\ge3xyz\)(do x+y+z=3) 

Do đó: \(x^4+y^4+z^4\ge3xyz\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x^4=y^4;y^4=z^4;z^4=x^4\\x^2y^2=y^2z^2;y^2z^2=z^2x^2;z^2x^2=x^2y^2\end{cases}\Leftrightarrow x=y=z}\)(1)

mà x+y+z=3 (2)

Từ (1) và (2) => 3x=3 => x=1 => y=z=1

=> \(x^{2018}+y^{2019}+x^{2020}=1+1+1=3\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Trần Văn Toàn
Xem chi tiết
Nguyen Hai Dang
Xem chi tiết
Vô Danh Tiểu Tốt
Xem chi tiết
tung
Xem chi tiết
Đăng Trần Hải
Xem chi tiết
NgDQ
Xem chi tiết
Ngô Huy Hoàng
Xem chi tiết
Bích Linh
Xem chi tiết
Ngô Hoài Thanh
Xem chi tiết