\(xy+yz+zx=\frac{\left(x+y+z\right)^2-\left(x^2+y^2+z^2\right)}{2}\)
Đặt \(a=x+y+z\)
\(A=a-\frac{a^2-\left(x^2+y^2+z^2\right)}{2}=-\frac{1}{2}\left(a-1\right)^2+\frac{x^2+y^2+z^2}{2}+\frac{1}{2}\le\frac{9}{2}+\frac{1}{2}=5\)
Dấu bằng xảy ra khi \(\int^{x^2+y^2+z^2=9}_{x+y+z=1}\)
có rất nhiều bộ số thỏa hệ trên, ví dụ \(\left(x;y;z\right)=\left(1;\text{ }2;\text{ }-2\right)\)
Vậy Max A = 5