Cho ba số x, y,z thỏa mãn:
\(\hept{\begin{cases}x^3+y^3+z^3=1\\x^2+y^2+z^2=1\end{cases}}\)
Tính tích P = xyz.
Cho \(\hept{\begin{cases}x+y+z=3\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{3}\\x^2+y^2+z^2=17\end{cases}}\)Tính \(xyz\)
Cho x , y , z thỏa mãn đồng thời :
\(\hept{\begin{cases}x+y+z=1\\x^2+y^2+z^2=1\\x^3+y^3+z^3=1\end{cases}}\) Tính S = \(x^{2013}+y^{2015}+z^{2017}+2019\)
Cho 3 số thực khác 0 thỏa mãn:
\(\hept{\begin{cases}xyz=1\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}< x+y+z\end{cases}}\)
Chứng minh rằng có đúng 1 trong 3 số x,y,z lớn hơn 1
Cho các số dương x, y, z thõa mãn \(\hept{\begin{cases}x^2+xy+\frac{y^3}{3}=25\\\frac{y^2}{3}+z^2=9\\z^2+xz+x^2=16\end{cases}}\)
tính giá trị của biểu thức \(N=xy+2yz+3xz\)
Cho các số thực x, y, z đôi một khác nhau, thoả mãn \(\hept{\begin{cases}x^3=3x-1\\y^3=3y-1\\z^3=3z-1\end{cases}}\)
Tính giá trị biểu thức P= x2 + y2 + z2
Tìm tất cả các bộ số (x; y; z) thỏa mãn \(\hept{\begin{cases}x+y+z=3\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{3}\\x^2+y^2+z^2=17\end{cases}}\)
Cho các số dương thỏa mãn \(\hept{\begin{cases}xy+x+y=3\\yz+y+z=8\\zx+z+x=15\end{cases}}\)
Tính P = x + y + z
Cho x,y,z khác 0 thỏa mãn \(\hept{\begin{cases}x+y+z=1\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\end{cases}}\)
Tính x2+y2+z2