Khi ab>=1 thì1/(1+a^2)+1/(1+b^2)>=2/(1+ab)
\(\frac{1}{\left(1+a^2\right)}+\frac{1}{\left(1+b^2\right)}\ge\frac{2}{\left(1+ab\right)}\)
\(\Leftrightarrow\left(1+b^2\right)\left(1+ab\right)+\left(1+a^2\right)\left(1+ab\right)\ge2\left(1+a^2\right)\left(1+b^2\right)\)
\(\Leftrightarrow1+b^2+ab+ab^2+1+a^2+ab+a^3b-2\left(1+a^2+b^2+a^2b^2\right)\ge0\)
\(\Leftrightarrow ab\left(a^2-2ab+b^2\right)-\left(a^2+2ab+b^2\right)\ge0\)
\(\Leftrightarrow\left(ab-1\right)\left(a-b\right)^2\ge0\left(đ\text{ieu nay khong the x ra}\right)\)
\(\text{Dau }"="\Leftrightarrow a=b=c=1\)
\(\frac{1}{\left(1+a^2\right)}+\frac{1}{\left(1+b^2\right)}\ge\frac{2}{\left(1-ab\right)}\)
\(\Leftrightarrow\left(1+b^2\right)\left(1+ab\right)+\left(1+a^2\right)\left(1+ab\right)\ge2\left(1+a^2\right)\left(1+b^2\right)\)
\(\Leftrightarrow1+b^2-ab+ab^2+1+a^2+ab+a^3b-2\left(1+a^2+b^2+a^2b^2\right)\ge0\)
\(\Leftrightarrow ab\left(a^2-2ab+b^2\right)-\left(a^2+2ab+b^2\right)\ge0\)
\(\Leftrightarrow\left(ab-1\right)\left(a-b\right)^2\ge0\)( kh xảy ra 0
\(Dau"="\Leftrightarrow a=b=c=1\)