Có : x/x+y ; y/y+z ; z/z+x đều > 0
=> x/x+y + y/y+z + z/z+x > x/x+y+z + y/x+y+z + z/x+y+z = x+y+z/x+y+z = 1
Lại có : x/x+y ; y/y+z ; z/z+x đều < 1
=> x/x+y + y/y+z + z/z+x < x+z/x+y+z + y+x/x+y+z + z+y/x+y+z = 2x+2y+2z/x+y+z = 2
=> ĐPCM
Tk mk nha
Có : x/x+y ; y/y+z ; z/z+x đều > 0
=> x/x+y + y/y+z + z/z+x > x/x+y+z + y/x+y+z + z/x+y+z = x+y+z/x+y+z = 1
Lại có : x/x+y ; y/y+z ; z/z+x đều < 1
=> x/x+y + y/y+z + z/z+x < x+z/x+y+z + y+x/x+y+z + z+y/x+y+z = 2x+2y+2z/x+y+z = 2
=> ĐPCM
Tk mk nha
Cho 3 số thực dương x,y,z thõa mãn 1/1+x +1/1+y + 1/1+z=1
CMR Trong 3 số x,y,z có ít nhất 1 số không nhỏ hơn 2 và có ít nhất 1 số không lớn hơn 2
Cho 3 số x nhỏ hơn y nhỏ hơn z thỏa mãn x+y+z=51.Biết rằng 3 tổng của 2 trong 3 số đã cho tỉ lệ với 9,12,13.Tìm x,y,z
cho x ; y ; z là các số dương . Chứng minh rằng : x/2x + y + z + y / 2y + z + x + z / 2z + x + y nhỏ hơn hoặc bằng \(\frac{3}{4}\)
Cho 3 số thực dương x,y,z thỏa mãn :\(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{z+1}=1\)
CMR Trong 3 số x,y,z có ít nhất một số ko nhỏ hơn 2 và một số ko lớn hơn 2
Cho ba số thực dương x,y,z t/m: \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}=1\)
CMR: Trong ba số x,y,z có ít nhất 1 số không nhỏ hơn 2 và một số không lớn hơn 2
Cho 3 số thực dương x,y,z thõa mãn \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}=1\)\(1\)
Chứng minh rằng: Trong 2 số x,y,z có ít nhất một số không nhỏ hơn 2 và có ít nhất 1 số không lớn hơn 2.
Tìm x,y,z thuộc Q:
a)|x+9/2|+|y+4/3|+|z+7/2| nhỏ hơn hoặc bằng 0
b)|x+3/4|+|y-2/5|+|z+1/2| nhỏ hơn hoặc bằng 0
c) |x+19/5|+|y+1890/1975|+|z-2004|=0
d) |x+3/4|+|y-1/5|+|x+y+z|=0
Giúp mk với mn ơi
Ax + By = Cz . Với điều kiện A, B, C, x, y, z đều là các số nguyên dương, trong đó x, y, z lớn hơn 2. Còn A, B, C có cùng bội số chung nhỏ nhất. đố ai giải được bài này
Giả sử x=a/m, y=b/m (a,b, c thuộc z,m lớn hơn 0) và x nhỏ hơn y. Hãy chứng tỏ nếu chọn z= a+ b/2m thì ta có x nhỏ hơn z nhỏ hơn y