cho 4 số nguyên a,b,c,d thỏa mãn a^3+b^3+c^3+7d^3 chia hết cho 6 .CMR A+B+C+D cũng chia hết cho 6
Bài 1: Cho số nguyên tố p lớn hơn 5 thỏa mãn p + 14 và p2 + 6 cũng là số nguyên tố. Chứng minh rằng p + 11 chia hết cho 10.
Bài 2: Cho số nguyên tố p lớn hơn 3 thỏa mãn 2p + 1 cũng là số nguyên tố. Chứng minh rằng p + 1 chia hết cho 6.
Bài 3: Cho các số nguyên tố p thỏa mãn 8p - 1 cũng là số nguyên tố. Chứng minh rằng 8p + 1 cũng là hợp số.
Bài 4: Tổng của 3 số nguyên tố bằng 1012. Tìm số nhỏ nhất trong 3 số nguyên tố đó.
Cho 4 số nguyên a,b,c,d thỏa mãn a^3+b^3+c^3+7d^3 chia hết cho 6 .Chứng minh rằng A+B+C+D cũng chia hết cho 6
Bài 1: Tìm hai số nguyên biết tích của chúng bằng hiệu của chúng
Bài 2: Cho a,b,c,d là các số nguyên thỏa mãn ab+cd chia hết cho a-c. C/M ad+bc cũng chia hết cho a-c
Bài 3: Tìm tát cả các số tự nhiên n sao cho \(3^{2n}+3^n+1\) chia hết cho 13
Cho a,b,c nguyên tố > 3
Thỏa mãn : a + b+ c = 2016^2017^2018 ( Lũy thừa tầng )
CMR : a^3 + b^3 + c^3 chia hết cho 24
CMR:
a) 14^14 -1 chia hết cho 3
b) 2009^2009-1 chia hết cho 2008
c) A= 2+ 2^2+...+2^60 chia hết cho 21 và 15
d) B= 5 + 5^2+...+5^12 chia hết cho 30 và 31
e) C= 1+3+3^2+...+3^11 chia hết cho 52
cho a,b là các số nguyên dương thỏa mãn: ab.(a + b)+ 2chia hết cho 3. Chứng minh :ab.(a + b) chia hết cho 9
Biết a và b là các số nguyên dương thỏa mãn (a2 - a.b+ b2) chia hết cho 9. Chứng minh a chia hết cho3 và b chia hết cho 3
cho 3 số tự nhiên a,b,c thỏa mãn a2+b2=c2
cmr: abc chia hết cho 12