Cho a,b,c là các số hữu tỉ thoả mãn điều kiện : ab + bc + ca = 1 , Cmr : (1+a^2)(1+b^2)(1+c^2) là bình phương của một số hữu tỉ .?
cho a,b,c là 3 số hữu tỉ thỏa mãn : 1/a+1/b=1/c.Chứng minh rằng a^2+b^2+c^2 là bình phương 1 số hữu tỉ
Cho \(a,b,c\) là các số hữu tỷ thỏa mãn điều kiện \(ab+bc+ac=1\). Chứng minh rằng biểu thức \(Q=\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\) là bình phương của một số hữu tỷ.
Cho a,b,c là các số hữu ti khác 0 thỏa mãn a+b+c=0.Chứng minh rằng: \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\) là bình phương của một số hữu tỉ
cho abc là sô hữu tỉ thõa mãn
ab+bc+ca=1
c/m (a^2+1)(b^2+1(c^2+1) là bình phương của một số hữu tỉ
cho a,b,c hữu tỉ thỏa mãn
(a2+b2-1)(a+b)2+(1-ab)2=-4ab
Cm 1+ab là bình phương 1 số hữu tỉ
Cho a,b,c là các số hữu tỉ thỏa mãn điều kiện ab+bc+ca= 1. Chứng minh rằng biểu thức \(Q=\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\)là bình phương của một số hữu tỉ