\(\left(x;2y;3z\right)\rightarrow\left(a;b;c\right)\Rightarrow a+b+c=3.\)
\(P=\sum\frac{a}{1+b^2}=\sum\frac{a\left(1+b^2\right)-ab^2}{1+b^2}=\sum\left(a-\frac{ab^2}{1+b^2}\right)\ge\sum\left(a-\frac{ab^2}{2b}\right)=\sum\left(a-\frac{ab}{2}\right)\)
\(\ge3-\frac{1}{2.3}\left(a+b+c\right)^2=\frac{3}{2}\)