Từ $\frac{x}{y}=\frac{2}{3}\implies \frac{x}{2}=\frac{y}{3}\implies \frac{x}{6}=\frac{y}{9}(1)$(chia mỗi vế cho 3).
Từ $\frac{x}{3}=\frac{z}{5}\implies \frac{x}{6}=\frac{z}{10}(2)$(chia mỗi vế cho 2).
Từ (1) và (2) suy ra: $\frac{x}{6}=\frac{y}{9}=\frac{z}{10}(=a)$.
$\implies x=6a;y=9a;z=10a$
$\implies x^2+y^2+z^2=36a^2+81a^2+100a^2=\frac{217}{4}\implies a^2=\frac{1}{2}\implies a=\frac{1}{2}\text{ hoặc } a=\frac{-1}{2}$.
Thế vào ta được: $(x;y;z)=(3;\frac{9}{2};5)$ hoặc $(x;y;z)=(-3;-\frac{-9}{2};-5)$
\(\frac{x}{y}=\frac{2}{3}\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{6}=\frac{y}{9}\left(1\right)\)
\(\frac{x}{3}=\frac{z}{5}\Rightarrow\frac{x}{6}=\frac{z}{10}\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow\frac{x}{6}=\frac{y}{9}=\frac{z}{10}\)
\(\Rightarrow\frac{x^2}{36}=\frac{y^2}{81}=\frac{z^2}{100}\)
Áp dụng tc của dãy tỉ số bằng nhau Ta có
\(\frac{x^2}{36}=\frac{y^2}{81}=\frac{z^2}{100}=\frac{x^2+y^2+z^2}{36+81+100}=\frac{\frac{217}{4}}{217}=\frac{1}{4}\)
\(\Rightarrow\begin{cases}x=\pm3\\y=\pm\frac{9}{2}\\z=\pm5\end{cases}\)
Mà 6;9;10 cùng dấu
=> x;y;z cùng dấu
\(\Rightarrow\left(x;y;z\right)\in\left\{\left(3;\frac{9}{2};5\right);\left(-3;-\frac{9}{2};-5\right)\right\}\)