ta có bđt phụ ,,,,,,,, x2+y2+z2 >= xy+yz+zx
thay vào thôi,,,cái bđt dễ cm mà,,,nhân 2 2 vế rồi dùng tương đương
ta có bđt phụ ,,,,,,,, x2+y2+z2 >= xy+yz+zx
thay vào thôi,,,cái bđt dễ cm mà,,,nhân 2 2 vế rồi dùng tương đương
Cho 3 số dương x,y,z thoả mãn x+y+z=1. Chứng minh:
\(\frac{3}{xy+yz+xz}+\frac{3}{x^2+y^2+z^2}>14\)
Cho x,y,z là 3 số thực dương thỏa mãn xyz=1. Chứng minh:
\(\frac{x^2}{y+1}+\frac{y^2}{z+1}+\frac{z^2}{x+1}>=\frac{3}{2}\)
Cho các số dương x,y,z thỏa mãn xy+yz+zx=3. Tìm GTNN của:
A= \(\frac{yz}{x^3+2}+\frac{xz}{y^3+2}+\frac{xy}{z^3+2}\)
Mình là thành viên mới, rất mong được học hỏi. Xin hãy giúp đỡ mình ạ!!!
Cho các số dương x,y,z thỏa mãn x2+y2+z2=1.
Chứng minh: \(\frac{x+y+z}{xy+yz+xz}\ge\sqrt{3}+\frac{1}{2\sqrt{3}}[\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2]\)
Cho x,y,z là các số dương thỏa mãn \(x^2+y^2+z^2=1\) . Chứng minh \(\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\)lớn hơn hoặc bằng căn 3
Cho ba số dương x,y,z thỏa mãn x+y+z=1. Chứng minh rằng:
\(\frac{3}{xy+yz+zx}+\frac{2}{x^2+y^2+z^2}\)\(>14\)
Cho 3 số thực dương x , y , z thỏa mãn \(x+y+z\ge3\)
Chứng minh rằng: \(\frac{x^2}{x+\sqrt{yz}}+\frac{y^2}{y+\sqrt{xz}}+\frac{z^2}{z+\sqrt{xy}}\ge\frac{3}{2}\)
cho x,y,z thỏa mãn \(\left\{{}\begin{matrix}x^2+y^2+z^2=2\\xy+yz+xz=1\end{matrix}\right.\)
chứng minh \(\dfrac{-4}{3}\le x,y,z\le\dfrac{4}{3}\)
1) Cho x,y,z>0 thoả mãn : xyz<=1. Chứng minh rằng: \(\frac{x\left(1-y^3\right)}{y^3}\)+ \(\frac{y\left(1-z^3\right)}{z^3}\)+\(\frac{z\left(1-x^3\right)}{x^3}\)>=0
2) Cho x, y, z là các số thực dương thỏa mãn x ≥ z. CMR: xz /(y^2 + yz) + y^2 / (xz + yz) + (x + 2z)/(x + z) ≥ 5/2
cho các số thực dương x,y,z thỏa mãn \(x^2+y^2+z^2=3xyz\) chứng minh \(\frac{x^2}{x^4+yz}+\frac{y^2}{y^4+xz}+\frac{z^2}{z^4+xy}\le\frac{3}{2}\)