\(\frac{x+y}{xyz}=\frac{1}{z}\left(\frac{1}{x}+\frac{1}{y}\right)\ge\frac{1}{z}\left(\frac{4}{x+y}\right)=\frac{4}{z\left(6-z\right)}\ge\frac{16}{\left(z+6-z\right)^2}=\frac{16}{36}=\frac{4}{9}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=y=\frac{3}{2}\\z=3\end{matrix}\right.\)