ta có: \(abc=1\Rightarrow\hept{\begin{cases}ab=\frac{1}{c}\\bc=\frac{1}{a}\\ac=\frac{1}{b}\end{cases}}\)
Ta có: (a+1)(b+1)(c+1) = abc + ac + bc +c + ab + a + b + 1 = 1 + 1/b + 1/a + 1/c + a + b + c +1 =(a+1/a) + (b+1/b) +(c+1/c) +2
Áp dụng BĐT Côsi cho từng cặp số ta có :
\(a+\frac{1}{a}\ge2\sqrt{a.\frac{1}{a}}=2.1=2 \)
\(b+\frac{1}{b}\ge2\sqrt{b.\frac{1}{b}}=2.1=2\)
\(c+\frac{1}{c}\ge2\sqrt{c.\frac{1}{c}}=2.1=2\)
<=> a+1/a+b+1/b+c+1/c +2 >= 2+2+2 +2
<=> (a+1)(b+1)(c+1) >= 8
Thanks nhưng mình chưa đc dùng BĐT Cauchy :))