Ta có: \(\frac{a+b-2023c}{c}=\frac{b+c-2023a}{a}=\frac{c+a-2023b}{b}\)
=>\(\frac{a+b}{c}-2023=\frac{b+c}{a}-2023=\frac{c+a}{b}-2023\)
=>\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b+b+c+a+c}{c+a+b}=\frac{2a+2b+2c}{a+b+c}=2\)
=>a+b=2c; b+c=2a; a+c=2b
\(M=\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\)
\(=\frac{a+b}{a}\cdot\frac{b+c}{b}\cdot\frac{c+a}{c}\)
\(=\frac{2c}{a}\cdot\frac{2a}{b}\cdot\frac{2b}{c}=8\)