Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Cỏ dại

Cho 3 chữ số x; y; z khác 0 và x + y z khác 0 thỏa mãn điều kiện :

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\) 

Tính giá trị biểu thức :

\(B=\left(1+\frac{x}{y}\right).\left(1+\frac{y}{2}\right).\left(1+\frac{z}{x}\right)\)

cao hà trang
1 tháng 3 2020 lúc 14:28

áp dụng tính chất của dãy tỉ số bằng nhau ta có:\(\frac{ }{ }\)

y+z-x/x=z+x-y/y=x+y-z/z

=y+z-x+z+x-y+x+y-z/x+y+z

=(y-y)+(z-z)-(x-x)+z+x+y/x+y+z

=0+0+0+x+y+z/x+y+z=1

\(\Leftrightarrow\)x=y=z (*)

thay (*) vào B ta có:

B=(1+x/x)(1+x/x)(1+x/x)

  =2.2.2=8

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
21 tháng 8 2020 lúc 8:24

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(...=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)( vì x + y + z \(\ne\)0 )

\(\Rightarrow\hept{\begin{cases}\frac{y+z-x}{x}=1\\\frac{z+x-y}{y}=1\\\frac{x+y-z}{z}=1\end{cases}}\Rightarrow\hept{\begin{cases}y+z-x=x\\z+x-y=y\\x+y-z=z\end{cases}}\Rightarrow\hept{\begin{cases}y+z=2x\\z+x=2y\\x+y=2z\end{cases}}\Rightarrow x=y=z\)

Thế x = y = z vào B ta được :

\(B=\left(1+\frac{y}{y}\right)\left(1+\frac{x}{x}\right)\left(1+\frac{z}{z}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2\cdot2\cdot2=8\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Dung Nguyen
Xem chi tiết
ミ★Zero ❄ ( Hoàng Nhật )
Xem chi tiết
Midori Miyama
Xem chi tiết
Nguyen Ngoc Minh Ha
Xem chi tiết
Evil
Xem chi tiết
Tên tôi là Thành
Xem chi tiết
Trần Ánh Nguyệt
Xem chi tiết
전정국
Xem chi tiết
Hà Hồng Nhung
Xem chi tiết