Từ 2.(x + y)= 5(y + z) = 3(z + x) => \(\frac{2\left(x+y\right)}{30}=\frac{5\left(y+z\right)}{30}=\frac{3\left(z+x\right)}{30}\) => \(\frac{x+y}{15}=\frac{y+z}{6}=\frac{z+x}{10}\)
Áp dụng t/c của dãy tỉ số bằng nhau ta có: \(\frac{x+y}{15}=\frac{y+z}{6}=\frac{z+x}{10}=\frac{\left(x+z\right)-\left(y+z\right)}{10-6}=\frac{\left(x+y\right)-\left(z+x\right)}{15-10}\)
=> \(\frac{x-y}{4}=\frac{y-z}{5}\) => \(\frac{x-y}{y-z}=\frac{4}{5}\)
Vậy...