Trong 2019 điểm đã cho, giả sử A;B;C là 3 điểm tạo thành tam giác có diện tích lớn nhất và \(S_{ABC}\le1\)
Qua A;B;C vẽ các đường thẳng song song các cạnh, chúng cắt nhau tạo thành tam giác DEF \(\Rightarrow S_{DEF}=4S_{ABC}\le4\)
Giả sử trong 2019 điểm đã cho, tồn tại 1 điểm M nằm ngoài tam giác DEF (nằm ngoài phần diện tích gạch chéo)
\(\Rightarrow MK>BH\) với \(MK;BH\) là đường vuông góc hạ từ M và B xuống AC
\(\Rightarrow S_{MAC}>S_{BAC}\) trái với giả thiết \(S_{ABC}\) là lớn nhất
Vậy ko tồn tại điểm nào nằm ngoài DEF hay 2019 điểm đều nằm trong tam giác DEF có diện tích ko vượt quá 4