Cho tam giác ABC có diện tích 81 cm2. Qua điểm M nằm trong tam giác, vẽ các đường thẳng song song với các cạnh của tam giác, tạo thành 3 hình bình hành và ba tam giác nhỏ. Biết diện tích 2 trong 3 tam giác nhỏ bằng 4 và 16 cm2. Tính diện tích tam giác thứ 3.
Cho tam giác ABC. Lấy điểm D cố định trên BC. Đường thẳng d di động song song với BC lần lượt cắt AB,AC tại điểm M,N. C/m diện tích tam giác DNM luôn < hoặc = diện tích tam giác ABC. Dấu bằng xảy ra khi nào?
Cho đường tròn (O) nội tiếp tam giác ABC với các tiếp điểm là D; E; F lần lượt thuộc các cạnh BC; CA; AB. Chứng minh rằng tích các khoảng cách hạ từ một điểm P bất kì thuộc đường tròn (O) đến các cạnh của tam giác ABC bằng tích các khoảng cách từ điểm P đến các cạnh của tam giác DEF
Cho tam giác ABC có ba góc nhọn và AB>AC. Tam giác ABC nội tiếp đường tròn (O;R). Đường cao AH của tam giác ABC cắt đường tròn (O;R) tại điểm thứ hai là D. Kẻ DM vuông góc với AB tại M.
a) Chứng minh tứ giác BDHM nội tiếp đường tròn.
b) Chứng minh DA là tia phân giác của \(\widehat{MDC}\)
c) Gọi N là hình chiếu vuông góc của D lên đường thẳng AC, chứng minh ba điểm M, H, N thẳng hàng.
d) Chứng minh \(AB^2+AC^2+CD^2+BD^2=8R^2\)
một tam giác vuông có diện tích bằng 24cm2 và hiệu 2 cạnh góc vuông bằng 2cm. Tính các cạnh góc vuông của tam giác vuông đó
Cho hình bình hành ABCD. Gọi E,F,G,K lần lượt là trung điểm của cạnh AB,BC,CD,DA. Tính diện tích đa giác là phần chung của tứ giác AGCF,BGDK,CEAK,DEBF theo diện tích của hình bình hành ABCD. ( Theo ứng dụng của tỉ số diện tích trong tam giác)
tam giác ABC có diện tích =120 cm^2, trên đoạn BC lấy M sao cho CM=2BM, trên đoạn AC lấy N sao cho AN=3CN, trên AB lấy P sao cho PA=PB. Diện tích của tam giác có 3 đỉnh là giao 3 đoạn thẳng AM,BN,CP là
Cho tam giác ABC vuông tại A đường cao AH biết AB = 6 cm BC = 10 cm a) Tính độ dài đường cao AH và số đo B^ của tam giác ABC b) tính diện tích tam giác AHB
Cho tam giác ABC có đường tròn nội tiếp (I), tiếp xúc với các cạnh BC,C A,AB theo thứ tự tại D,E,F. Đường thẳng qua A song song với BC cắt DE,DF thứ tự tại P,Q.
a) Chứng minh rằng A là trung điểm của PQ.
b) Chứng minh rằng trực tâm của tam giác DPQ nằm trên (I).
c) Gọi M là trung điểm EF. Chứng minh \(\widehat{PMQ}\) là góc tù.
Idol nào zô làm cái