Cho tam giác ABC. Lấy điểm D cố định trên BC. Đường thẳng d di động song song với BC lần lượt cắt AB,AC tại điểm M,N. C/m diện tích tam giác DNM luôn < hoặc = diện tích tam giác ABC. Dấu bằng xảy ra khi nào?
Cho tam giác ABC và điểm M nằm trong tam giác. Qua M kẻ đường thẳng DE, IJ, FG tương ứng song song với các cạnh BC, CA, AB (G, I thuộc BC; E, F thuộc CA; D, I thuộc AB). Chứng minh: \(S_{AIMF}+S_{BGMD}+S_{CEMJ}\le\dfrac{2}{3}S_{ABC}\)
Cho hình bình hành ABCD. Gọi E,F,G,K lần lượt là trung điểm của cạnh AB,BC,CD,DA. Tính diện tích đa giác là phần chung của tứ giác AGCF,BGDK,CEAK,DEBF theo diện tích của hình bình hành ABCD. ( Theo ứng dụng của tỉ số diện tích trong tam giác)
một tam giác vuông có diện tích bằng 24cm2 và hiệu 2 cạnh góc vuông bằng 2cm. Tính các cạnh góc vuông của tam giác vuông đó
Tính hai cạnh góc vuông của một tam giác vuông biết rằng nếu tăng cạnh lớn lên 5cm và tăng cạnh nhỏ thêm 3cm thì diện tích tam giác tăng thêm 80cm2 và nếu giảm mỗi cạnh đi 2cm thì diện tích giảm đi 35cm2.
Cho tam giác ABC vuông tại A đường cao AH biết AB = 6 cm BC = 10 cm a) Tính độ dài đường cao AH và số đo B^ của tam giác ABC b) tính diện tích tam giác AHB
Cho tam giác ABC có AB ACGH.
1. Chứng minh BH = EC .
2. Vẽ hình bình hành 4EFH . Chứng minh rằng 4F vuông góc với BC.
3. Gọi O là giao điểm các đường trung trực của tam giác ABC, M và N lần lượt là trung điểm của
EH và BC, biết OH = OE . Chứng minh tứ giác AMON là hình bình hành và tính góc BỌC.
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn tâm O bán kính R. AD, BE là các đường cao của tam giác ABC. Các tia AD, BE lần lượt cắt (O) tại các điểm thứ hai là M và N. Chứng minh:
a) MN song song với DE
b) Cho (O) và dây AB cố định, điểm C di chuyển trên cung lớn AB. Chứng minh độ dài đường kính đường tròn ngoại tiếp tam giác CDE không đổi
tam giác ABC có diện tích =120 cm^2, trên đoạn BC lấy M sao cho CM=2BM, trên đoạn AC lấy N sao cho AN=3CN, trên AB lấy P sao cho PA=PB. Diện tích của tam giác có 3 đỉnh là giao 3 đoạn thẳng AM,BN,CP là