Cho đường tròn tâm O và 1 điểm M nằm ngoài đường tròn. Từ M kẻ hai tiếp điểm MA, MB với đường tròn, Gọi C là 1 điểm trên cung AB của đường tròn tâm M bán kính MA, (cung AB nằm trong dường tròn (O)). Các tia AC,BC cắt dường tròn (O) tại P và Q. Chứng minh rằng PQ đi qua O
Cho đường tròn tâm O và 1 điểm M nằm ngoài đường tròn. Từ M kẻ hai tiếp điểm MA, MB với đường tròn, Gọi C là 1 điểm trên cung AB của đường tròn tâm M bán kính MA, (cung AB nằm trong dường tròn (O)). Các tia AC,BC cắt dường tròn (O) tại P và Q. Chứng minh rằng PQ đi qua O
Cho đường tròn (O) . Từ điểm K nằm bên ngoài đường tròn, kẻ hai tiếp tuyến KA, KB tới đường tròn ( .A, B là các tiếp điểm). Trên nửa mặt phẳng bờ KO chứa điểm A, vẽ cát tuyến KCD của đường tròn ( C nằm giữa K và D). Gọi I là trung điểm của CD .
a) Chứng minh bốn điểm K.O,H.B cùng thuộc một đường tròn.
b) Chứng minh HK là giác của góc AHB.
c) Kẻ đường kính AI. Nối IC và ID cắt KO tại M và N. Chứng minh rằng OM = ON .
Cho đường tròn (O) . Từ điểm K nằm bên ngoài đường tròn, kẻ hai tiếp tuyến KA, KB tới đường tròn ( .A, B là các tiếp điểm). Trên nửa mặt phẳng bờ KO chứa điểm A, vẽ cát tuyến KCD của đường tròn ( C nằm giữa K và D). Gọi I là trung điểm của CD .
a) Chứng minh bốn điểm K.O,H.B cùng thuộc một đường tròn.
b) Chứng minh HK là giác của góc AHB.
c) Kẻ đường kính AI. Nối IC và ID cắt KO tại M và N. Chứng minh rằng OM = ON .
1) Cho đường tròn
O R;
và đường thẳng xy. Chứng minh rằng nếu xy cắt đường tròn
O
tại hai điểm A và
B thì mọi điểm nằm giữa A, B đều nằm trong đường tròn
O
; mọi điểm còn lại trên xy (trừ A và B) đều nằm
ngoài đường tròn
O . giúp mik vs ạ
Đề 1:
Câu 5.
Trên mặt phẳng cho n điểm ( n \(\ge\)3), trong đó không có 3 điểm nào thẳng hàng. Chứng minh rằng tồn tại một đường tròn đi qua 3 điểm trong số các điểm đã cho mà không chứa trong nó điểm nào thuộc tập các điểm còn lại.
Cho đường tròn (O; 2cm), điểm A nằm bên ngoài đường tròn sao cho OA = 4 cm. Kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm)
a) Chứng minh rằng 4 điểm A, B, O, C cùng nằm trên một đường tròn. Xác định tâm I của đường tròn
b) Chứng minh tam giác ABC là tam giác đều.
c) Chúng minh BI song song với OC
Cho 20 điểm phân biệt trong mặt phẳng. Chứng minh rằng tồn tại đường tròn chứa đúng 12 điểm đã cho bên trong và có đúng 8 điểm đã cho bên ngoài.
Bài 2. Cho đường tròn (O; R) và điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm)
a. Chứng minh 4 điểm A, B, O, C cùng nằm trên một đường tròn.
b. Gọi E là giao điểm của BC và OA. Chứng minh OE.OA = 𝑅2
c. Trên cung nhỏ BC của đường tròn (O; R) lấy điểm K bất kì (K khác B, C). Tiếp tuyến tại K của đường tròn (O, R) cắt AB, AC theo thứ tự tại P, Q. Chứng minh tam giác APQ có chu vi không đổi khi K chuyển động trên cung nhỏ BC.
giúp mình với ạ mai mình nộp rồi, cảm ơn mn!