Bạn may đấy...
----------------
Ta có: \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
nên \(2025\ge\left(x+y\right)^2\) (do \(2\left(x^2+y^2\right)=2025\))
\(\Leftrightarrow\) \(\sqrt{2025}\ge x+y\)
\(\Leftrightarrow\) \(45\ge x+y\) với mọi \(x;y\)
Vậy, Giá trị lớn nhất của \(x+y\) là \(45\)