Cho 2 số tự nhiên a và b. Biết rằng a + b = \(\sqrt{\overline{ab}}\) và 2(a + b) = \(\overline{ba}\)
Vậy a - b = . . .
vì ab = 10a+b
=> a+b=\(\sqrt{10a+b}\)(1)
vì 2(a+b) =ba
=> 2(a+b)=10b+a(2)
Từ (1) và (2)=> 2(a+b)=2\(\sqrt{10a+b}\)=10b+a(*)
<=> 2a+2b=10b+a
<=> a=8b(3)
Thay (3) vào (2) có: 2(a+b)=10b+a=18b(4)
Thay (4) vào (*) ta có:
2\(\sqrt{81b}\)=18b
=>18\(\sqrt{b}\)=18b
=> b=1
=> a=8
=. a-b=7