Cho x,y là 2 số thực thỏa mãn:
\(^{x^2+y^2=x\sqrt{1-y^2}+y\sqrt{1-x^2}}\)
tìm Max A= 3x+4y
Cho x, y là 2 số thực thỏa mãn \(x^2+y^2=x\sqrt{1-y^2}+y\sqrt{1-x^2}\)
Chứng minh rằng3x+4y\(\le\)5
Cho x,y là các số thực dương thỏa mãn: (x+\(\sqrt{x^2+1}\))(y+\(\sqrt{y^2+1}\))=2
Tính Q= \(x\sqrt{y^2+1}\)+y\(\sqrt{x^2+1}\)
Cho \(x^2+y^2=x\sqrt{1-y^2}+y\sqrt{1-x^2}\) Chứng minh rằng: \(3x+4y\le5\)
cho x,y là những số thực dương thỏa mãn
(x+1)(y+1)=4xy
CMR
\(\frac{1}{\sqrt{3x^2+1}}+\frac{1}{\sqrt{3y^2+1}}\le1\)
Cho các số thực x,y thỏa mãn : \(\left(x+\sqrt{1+y^2}\right)\left(y+\sqrt{1+x^2}\right)=1\)
cmr: \(\left(x+\sqrt{1+x^2}\right)\left(y+\sqrt{1+y^2}\right)=1\)
Cho các số thực dương x,y,z thỏa mãn điều kiện:
\(x\sqrt{1-y^2}+y\sqrt{1-z^2}+z\sqrt{1-x^2}=\frac{3}{2}\)
CMR : \(x^2+y^2+z^2=\frac{3}{2}\)
Tìm x,y thỏa mãn:
\(4y\sqrt{x-2}+2x\sqrt{y-1}=y\left(3x-2\right)\)
Tìm các số thực x,y thỏa mãn: \(2x+y^2-2y\sqrt{x-1}+2\sqrt{x-1}-4y+3=0\)(1000% ko sai đề)