Cho hai số a. b thỏa mãn điều kiện \(a+b\ge1\) và 1>a>0
Tìm GTNN của biểu thức \(\frac{8a^2+b}{4a}+b^2\)
Cho 2 số thực a,b thay đổi thỏa mãn đk : a + b >= 0; 1>a>0
Tính GTNN của A=\(\frac{8a^2+b}{4a}\)+ b\(^2\)
Cho hai số thực a,b thay đổi, thỏa mãn điều kiện a + b ≥ 1 và a > 0. Tìm giá trị nhỏ nhất của: Q = 2a + b2 + \(\frac{b}{4a}\)
Cho hai số thực a,b thay đổi, thỏa mãn điều kiện a + b ≥ 1 và a > 0. Tìm giá trị nhỏ nhất của: Q = 2a + b2 + \(\frac{b}{4a}\)
Cho a; b; c là 3 số thỏa mãn điều kiện a^2+b^2+c^2+16=8a+4b. CMR: 10<= 4a+3b<=40
Cho a; b; c là 3 số thỏa mãn điều kiện a^2+b^2+c^2+16=8a+4b. CMR: 10<= 4a+3b<=40
Cho các số thực dương a, b thỏa mãn điều kiện 1<=a<= 2; 1<=b<= 2
TÌM giá trị lớn nhất của biểu thức |
P=a^2+b^2-(1/a+1/b)-4a-13b/4+4
Cho a, b là các số thực dương thỏa mãn a + b = 4ab
Tìm GTNN của biểu thức \(P=\frac{a}{1+4b^2}+\frac{b}{1+4a^2}\)
Cho ba số thực dương a, b, c thỏa mãn điều kiện \(\frac{1}{a+2}+\frac{3}{b+4}\le\frac{c+1}{c+3}\)
Tìm GTNN của biểu thức Q = (a + 1)(b + 1)(c + 1).