cho a,b la cac so duong thoa man : a+b=1
Tim gia tri nho nhat cua bieu thuc: T= \(\frac{19}{ab}+\frac{6}{a^2+b^2}+2011\left(a^4+b^4\right)\)
Cho a>0 b>0 va a+b =< 4 . tim GTNN cua bkeu thuc A=2/(a^+b^2) +35/ab+2ab
Cho cac so a, b, c thoa man a2 +b2+c2( <=) 2 .Tim gia tri nho nhat cua bieu thuc S=2015ca-ab-bc
cho cac so thuc thoa man a+b+c=6 va 0 =<a,b,c=<4
Tim Max P=a2+b2+c2+ab+ac+bc
cho cac so thuc duing x,y thoa man x+y<=3.Tim GTNN cua bieu thuc : P=1/5xy + 5/x+2y+5
Cho a,b la cac so thuc duong thoa man a^2 +b^2 =2.Tim gia tri lon nhat cua bieu thuc
P=a\(\sqrt{b\left(a+8\right)}\)+b\(\sqrt{a\left(b+8\right)}\)
cho 3 so a,b,c thoa man 0<a<b<c<1. tim gia tri lon nhat cua bieu thuc B=(a+b+c+3)[1/(a+1)+1/(b+1)+1/(c+1)]
Cho 2 so duong a,b thoa man \(\frac{1}{a}+\frac{1}{b}=2\)
Tim GTLN cua bieu thuc A=\(\frac{1}{a^4+b^2+2ab^2}+\frac{1}{b^4+a^2+2a^2b}\)
Cho a,b la cac so thuc duong thoa man a+b >=4 .
Tim GTNN cua P = \(\frac{2a^2+9}{a}+\frac{3b^2+2}{b}\)