Cho các số nguyên dương a,b thỏa mãn ab+1 là số chính phương. Chứng minh rằng tồn tại số nguyên dương c sao cho ac+1 và bc+1 cùng là số chính phương
cho a,b nguyên dương sao cho \(a^2+b^2⋮ab\)
cmr:\(M=\frac{8ab}{a^2+b^2}\) là số chính phương
Cho các số nguyên dương a , b , c TM ( a , b , c ) = 0 và ab/( a + b ) = c
CMR : a - b là số chính phương
Tìm số nguyên dương a sao cho 3^a +a^2 là số chính phương
Chỉ biết mấy cái sau về đặc điểm của số chính phương mà không biết chứng minh . Các bạn giúp mình chứng minh nhé .
Số chính phương không bao giờ tận cùng là 2, 3, 7, 8.Khi phân tích 1 số chính phương ra thừa số nguyên tố ta được các thừa số là lũy thừa của số nguyên tố với số mũ chẵn.Số chính phương chia cho 4 hoặc 3 không bao giờ có số dư là 2; số chính phương lẻ khi chia 8 luôn dư 1.Công thức để tính hiệu của hai số chính phương: a^2-b^2=(a+b)x(a-b).Số ước nguyên duơng của số chính phương là một số lẻ.Số chính phương chia hết cho số nguyên tố p thì chia hết cho p^2.Tất cả các số chính phương có thể viết thành dãy tổng của các số lẻ tăng dần từ 1: 1, 1 + 3, 1 + 3 + 5, 1 + 3 + 5 +7, 1 + 3 + 5 +7 +9 v.v...cho a,b thuộc N (a,b>0) và A=(a^2+b^2)/(ab+1) là số nguyên. CMR A là số chính phương.
cho a,b thuộc N (a,b>0) và A=(a^2+b^2)/(ab+1) là số nguyên. CMR A là số chính phương.
cho a,b thuộc N (a,b>0) và A=(a^2+b^2)/(ab+1) là số nguyên. CMR A là số chính phương.
cho a,b thuộc N (a,b>0) và A=(a^2+b^2)/(ab+1) là số nguyên. CMR A là số chính phương.