1.Cho x,y > 0 và x^2 + y^2 = 1
Tìm GTNN của \(A=\frac{-2xy}{1+xy}\)
2.cho các số dương x, y,z thỏa man x+y+z=4. Chứng minh \(\frac{1}{xy}+\frac{1}{xz}>=1\)
3.3)cho các số x, y không âm thỏa mãn x+y=1 . tìm gtnn ,gtln của A =x^2+y^2
chô x,y là cac số dương thỏa mãn \(\frac{1}{x}+\frac{4}{y}=1\) . tính GTNN của P=x+y
Cho các số dương x, y thỏa mãn x.y = 1. Tìm GTNN của biểu thức:
P = \[(x + y + 1).({x^2} + {y^2}) + \frac{4}{{x + y}}\]
cho x, y là các số thực dương thỏa mãn x+y=4
tìm GTNN của : \(M=\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}\)
Cho x,y là 2 số dương thỏa mãn x+y=1.Tìm GTNN của A =\(\frac{1}{x^2+y^2}+\frac{3}{4xy}\)
cho x,y là 2 số dương thỏa mãn x+y=1 , tìm GTNN của A= \(\frac{x}{\sqrt{1-x}}+\frac{y}{\sqrt{1-y}}\)
cho x,y,z là các số thực dương thỏa mãn x,y,z>0 thỏa mãn x(x-z)+y(y-z) =0 tìm GTNN của \(P=\frac{x^3}{x^2+z^2}+\frac{y^3}{y^2+z^2}+\frac{x^2+y^2+4}{x+y}\)
Cho các số thực dương x, y, z thỏa mãn: x+y+z=3. Tìm GTNN của \(P=\frac{x+1}{y^2+1}+\frac{y+1}{z^2+1}+\frac{z+1}{x^2+1}\)
Cho các số dương x,y thỏa mãn : \ \left \sqrt{x} 1\right \left 2\sqrt{y} 4\right y\ge13\ 13 . Tìm GTNN của biểu thức : P \ \frac{x 4}{y} \frac{y 3}{x} y\
K ai làm đc hả :((