Ta có :
\(A_{\left(n\right)}.B_{\left(n\right)}=\left(2^{2n+1}+2^{n+1}+1\right)\left(2^{2n+1}-2^{n+1}+1\right)\)
\(=\left[\left(2^{2n+1}+1\right)-2^{n+1}\right]\left[\left(2^{2n+1}+1\right)+2^{n+1}\right]\)
\(=\left(2^{2n+1}+1\right)^2-\left(2^{n+1}\right)^2\)
\(=\left(2^{2n+1}\right)^2+2.2^{2n+1}+1-\left(2^{n+1}\right)^2\)
\(=2^{4n+2}+2^{2n+2}+1-2^{2n+2}\)
\(=4^{2n+1}+1\) luôn chia hết cho 5\(\forall n\in N\)
Do đó \(A_{\left(n\right)}.B_{\left(n\right)}\) chia hết cho 5 hay tồn tại 1 và duy nhất \(A_{\left(n\right)}\) hoặc \(B_{\left(n\right)}\) chia hết cho 5