1.Cho các góc\(\alpha,\beta\)nhọn và \(\alpha< \beta\). Chứng minh \(\sin\left(\beta-\alpha\right)=\sin\beta\cos\alpha-\cos\beta\sin\alpha\)
2.Cho các góc \(\alpha,\beta\)nhọn và \(\alpha< \beta\).Chứng minh \(\cos\left(\beta-\alpha\right)=\cos\beta\cos\alpha+\sin\beta\sin\alpha\)
3.Cho các góc \(\alpha,\beta\)nhọn. Chứng minh \(\sin\left(\alpha+\beta\right)=\sin\alpha\cos\beta+\sin\beta\cos\alpha\)
4.Cho các góc \(\alpha,\beta\)nhọn. Chứng minh \(\cos\left(\alpha+\beta\right)=\cos\alpha\cos\beta-\sin\alpha\sin\beta\)
cho \(0^o< \alpha< \beta< 90^o\). chứng minh :\(\cos\left(\alpha-\beta\right)=\cos\left(\alpha\right)\cos\left(\beta\right)+\sin\left(\alpha\right)\sin\left(\beta\right)\)
Cho hai góc nhọn \(\alpha\)và \(\beta\)sao cho \(\alpha+\beta< 90\)độ .
CMR: \(\sin\left(\alpha+\beta\right)=\sin\alpha\times\cos\beta+\sin\beta\times\cos\alpha\)
Cho \(\alpha,\beta\)nhọn. chứng minh
\(\cos\left(\alpha+\beta\right)=\cos\beta\cos\alpha-\sin\alpha\sin\beta\)
Cho 2 góc \(\alpha,\beta\) sao cho \(\alpha+\beta
Chứng minh các biểu thức sau không phụ thuộc vào các góc nhọn \(\alpha\)
a) \(C=\cos^4\alpha+\sin^2\alpha.\cos^2\alpha+\sin^2\alpha\)
b) \(D=\sin^2\alpha.\sin^2\beta+\sin^2\alpha.\cos^2\beta+\cos^2\alpha\)
c) E=\(\sin^6\alpha+\sin^6\beta+3.\sin^2\alpha.\cos^2\alpha\)
d) \(M=\frac{\left(\cos\alpha-\sin\alpha\right)^2-\left(\cos\alpha+\sin\alpha\right)^2}{\cos\alpha.\sin\alpha}\)
CMR: \(\cos\left(\beta-\alpha\right)=\cos\alpha.\cos\beta+\sin a.\sin\beta\)
Giúp mik với
cho tam giác ABC vuonong tị A có AB<Ac, M là trung điểm BC
\(ACB=\alpha\) , góc AMB =\(\beta\) CMR: \(\left(-sin^2\alpha+cos^2\alpha\right)=sin\beta\)
cho tam giác ABC vuonong tị A có AB<Ac, M là trung điểm BC
\(góc ACB=\alpha\), góc AMB =\(\beta\) . CMR: \(\left(cos^2\alpha-sin^2\alpha\right)=cos\beta\)