Cho đường tròn (O) và (O') cắt nhau tại A và B (O,O' thuộc 2 nửa mặt phẳng bờ AB), một cát tuyến kẻ qua A cắt (O) ở C, cắt (O') ở D. Kẻ OM vuông góc với CD, O'N vuông góc với CD
a) Chứng minh: CD=2MN
b) Gọi I là trung điểm của MN. Chứng minh: đường thẳng kẻ qua I vuông góc với BC đi qua 1 điểm cố định khi cát tuyến vẽ qua A thay đổi
c) Qua A kẻ cát tuyến // với đường nối tâm OO', cắt (O) tại P, cắt (O') tại Q. So sánh PQ và CD.
Cho hai đường tròn (O; R) và (O’; R’) cắt nhau tại A và B. (O và O’ nằm ở hai nửa mặt phẳng bờ AB). Một đường thẳng qua A cắt đường tròn (O) và (O’) tương ứng tại C và D (A nằm giữa C và D). Các tiếp tuyến tại C và D của hai nửa đường tròn cắt nhau tại K. Nối KB cắt CD tại I. Kẻ IE // KD (E thuộc BD).
a) Chứng minh tam giác BOO’ và tam giác BCD đồng dạng.
b) Chứng minh tứ giác BCKD nội tiếp.
c) Chứng minh AE là tiếp tuyến của đường tròn (O; R).
d) Tìm vị trí của CD để diện tích tam giác BCD lớn nhất.
Cho 2 đường tròn ( O , R ) và ( O' , R ) cắt nhau ở A và B . Cát tuyến qua B vuông góc với AB cắt các đường tròn ( O ) và ( O' ) lần lượt tại C , D . Một cát tuyến bất kì qua B cắt ( O ) , ( O' ) lần lượt tại M , N , CM cắt DN tại P
a ) CM : AM = AN
b ) CM 4 điểm A, M, P, N nằm trên 1 đường tròn
c ) Gọi I là trung điểm MN . Chứng minh A , I , P thẳng hàng
Giup e với mn ơi =')
Cho hai đường tròn (O) và (O’) cắt nhau tại hai điểm A, B (O, O’ thuộc hai nửa mặt phẳng bờ AB). Tiếp tuyến chung gần B của hai đường tròn lần lượt tiếp xúc với (O) và (O’) tại C, D. Qua A kẻ đường thẳng song song với CD lần lượt cắt (O) và (O’) tại M, N (M, N khác A). Các đường thẳng CM và DN cắt nhau tại E. Gọi P và Q lần lượt là giao điểm của đường thẳng MN với đường thẳng BC và đường thẳng BD. Chứng minh rằng:a)Đường thẳng AE vuông góc với đường thẳng CD. b)Tứ giác BCED nội tiếp. c)Tam giác EPQ là tam giác cân
Cho đường tròn (O) và (O') cắt nhau tại A và B (O,O' thuộc 2 nửa mặt phẳng bờ AB), một cát tuyến kẻ qua A cắt (O) ở C, cắt (O') ở D. Kẻ OM vuông góc với CD, O'N vuông góc với CD
a) Chứng minh: MN=1/2 CD
b) Gọi I là trung điểm của MN. Chứng minh: đường thẳng kẻ qua I vuông góc với BC đi qua 1 điểm cố định khi cát tuyến vẽ qua A thay đổi
c) Qua A kẻ cát tuyến // với đường nối tâm OO', cắt (O) tại P, cắt (O') tại Q. So sánh PQ và CD.
Cho 2 đường tròn tâm O và tâm O' cắt nhau tại A và B. 2 tâm đường tròn nằm trên 2 mặt phẳng bờ AB Qua B kẻ cát tuyến vuông góc với AB cắt đường tròn tâm O ở C và cắt đường tròn tâm O' ở D. Tia Ca cắt đường tròn tâm O' ở I. Tia DA cắt đường tròn tâm O tại K.
Chứng minh tứ giác CKID là tứ giác nội tiếp
Gọi M là giao điểm của CK và DI. chứng minh M, A, B thẳng hàng
1.Cho (O;R). Qua điểm M nằm trong đương tròn vẽ các dây CD và EF không đi qua O. Tiếp tuyến tại C và D của (O) cắt nhau ở A, tiếp tuyến tại E và F của (O) cắt nhau tại B. Chứng minh OM vuông góc với AB
2. Cho (O) và đường thẳng d không cắt (O). Gọi H là hình chiếu của (O) trên d. Từ H vẽ các cát tuyến HCD và HAB với (O) (C nằm giữa H và D, A nằm giữa H và B, các cát tuyến không đi qua O). Tiếp tuyến tại A của (O) cắt d tại M. Tiếp tuyến tại C của (O) cắt d tại M. Chứng minh ΔOMN cân
1.Cho (O;R). Qua điểm M nằm trong đương tròn vẽ các dây CD và EF không đi qua O. Tiếp tuyến tại C và D của (O) cắt nhau ở A, tiếp tuyến tại E và F của (O) cắt nhau tại B. Chứng minh OM vuông góc với AB
2. Cho (O) và đường thẳng d không cắt (O). Gọi H là hình chiếu của (O) trên d. Từ H vẽ các cát tuyến HCD và HAB với (O) (C nằm giữa H và D, A nằm giữa H và B, các cát tuyến không đi qua O). Tiếp tuyến tại A của (O) cắt d tại M. Tiếp tuyến tại C của (O) cắt d tại M. Chứng minh \(ΔOMN\) cân
1.Cho (O;R). Qua điểm M nằm trong đương tròn vẽ các dây CD và EF không đi qua O. Tiếp tuyến tại C và D của (O) cắt nhau ở A, tiếp tuyến tại E và F của (O) cắt nhau tại B. Chứng minh OM vuông góc với AB
2. Cho (O) và đường thẳng d không cắt (O). Gọi H là hình chiếu của (O) trên d. Từ H vẽ các cát tuyến HCD và HAB với (O) (C nằm giữa H và D, A nằm giữa H và B, các cát tuyến không đi qua O). Tiếp tuyến tại A của (O) cắt d tại M. Tiếp tuyến tại C của (O) cắt d tại M. Chứng minh \(\Delta OMN\) cân
GIÚP ĐI MÀ 😭😭😭😭😭
Cho đường tròn (O) và (O') cắt nhau tại A và B (O,O' thuộc 2 nửa mặt phẳng bờ AB), một cát tuyến kẻ qua A cắt (O) ở C, cắt (O') ở D. Kẻ OM vuông góc với CD, O'N vuông góc với CD
a) Chứng minh: MN=1/2 CD
b) Gọi I là trung điểm của MN. Chứng minh: đường thẳng kẻ qua I vuông góc với BC đi qua 1 điểm cố định khi cát tuyến vẽ qua A thay đổi
c) Qua A kẻ cát tuyến // với đường nối tâm OO', cắt (O) tại P, cắt (O') tại Q. So sánh PQ và CD.