Ta có :
M + N = 6x2 + 3xy - 2y2 + ( 3y2 - 2x2 - 3xy )
= 6x2 + 3xy - 2y2 + 3y2 - 2x2 - 3xy
= 4x2 + y2 ( đoạn này mình làm hơi tắt sry nha)
Do 4x2 + y2 \(\ge\)0
Suy ra : M + N \(\ge\) 0 <=> M và N \(\ge\)0
Do đó không tồn tại giá trị nào của x để 2 đa thức M và N có cùng giá trị âm
Đặt \(X=M+N=4x^2+y^2\)
Vì \(4x^2\ge0\forall x\)
\(y^2\ge0\forall x\)
\(X\ge0\forall x\)
Vậy...
Ta có: \(M+N=\left(6x^2+3xy-2y^2\right)+\left(3y^2-2x^2-3xy\right)\)
\(\Rightarrow M+N=6x^2+3xy-2y^2+3y^2-2x^2-3xy\)
\(\Rightarrow M+N=\left(6x^2-2x^2\right)+\left(3xy-3xy\right)+\left(3y^2-2y^2\right)\)
\(\Rightarrow M+N=4x^2+0+y^2\)
\(\Rightarrow M+N=4x^2+y^2\)
Ta có: \(\hept{\begin{cases}4x^2\ge0\\y^2\ge0\end{cases}}\Rightarrow M+N\ge0\)
Vậy hai đa thức M và N không thể nhận cùng lúc hai giá trị âm