Cho 2 bpt: x2 - m(m2+1)x+m4 < 0 (1) và x2 + 4x + 3 > 0 (2). Tìm các giá trị của tham số m sao cho nghiệm của bpt (1) đều là nghiệm của bpt (2)
A. m \(\le\)-3 hoặc m \(\ne\)0
B. m \(\in\)( - \(\infty\); -3] \(\cup\)(-1; + \(\infty\)) \ { 0;1}
C. m > -1 và m \(\ne\)0
D. m \(\le\)-3
Mình cần giải chi tiết tự luận bạn nhé, còn nếu không giải theo cách trắc nghiệm thì nói rõ ra nhé! Cảm ơn các bạn!
\(\left(2\right)\Leftrightarrow\left[{}\begin{matrix}x>-1\\x< -3\end{matrix}\right.\)
Xét (1), đặt \(f\left(x\right)=x^2-m\left(m^2+1\right)+m^4\), ta có:
\(\Delta=m^2\left(m^2+1\right)^2-4m^4=m^2\left(m^2-1\right)^2\ge0\) ; \(\forall m\)
Nếu \(\left[{}\begin{matrix}m=0\\m=1\\m=-1\end{matrix}\right.\) \(\Rightarrow\left(1\right)\) vô nghiệm (ktm)
Nếu \(m\ne\left\{0;\pm1\right\}\) \(\Rightarrow\) nghiệm của (1) đều là nghiệm của (2) khi và chỉ khi: \(\left[{}\begin{matrix}x_1< x_2\le-3\\x_2>x_1\ge-1\end{matrix}\right.\)
TH1: \(x_1< x_2\le-3\Leftrightarrow\left\{{}\begin{matrix}f\left(-3\right)\ge0\\\frac{x_1+x_2}{2}< -3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^4+3m^3+3m+9\ge0\\m^3+m< -6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^3+3\right)\left(m+3\right)\ge0\\\left(m^3+3\right)+\left(m+3\right)< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^3+3\le0\\m+3\le0\end{matrix}\right.\) \(\Rightarrow m\le-3\)
TH2:
\(x_2>x_1\ge-1\Leftrightarrow\left\{{}\begin{matrix}f\left(-1\right)\ge0\\\frac{x_1+x_2}{2}>-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^4+m^3+m+1\ge0\\m^3+m>-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(m^3+1\right)\left(m+1\right)\ge0\\\left(m^3+1\right)+\left(m+1\right)>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^3+1\ge0\\m+1\ge0\end{matrix}\right.\) \(\Rightarrow m\ge-1\)
Kết hợp điều kiện delta, ta được đáp án B đúng