Cho 1/x+1/y+1/z=0(x,y,z khác 0). Tính yz/x2+xz/y2+xy/z2
Cho x,y,z#0 và 1/xy+1/yz+1/xz=0
tính x^2/yz+y^2/xy+z^2/xy
cho x,y,z đôi một khác nhau và 1/x+1/y+1/z=0
tính giá trị của biểu thức A=(yz/x^2+yz)+(xz/y^2+2xz)+(xy/z^2+2xy)
Cho x,y,z khác 0 và 1/x + 1/y + 1/z = 0
tính giá trị của A = yz/x2 + xz/ y2 + xy/ z2
cho x,y,z đôi một khác nhau và 1/x+1/y+1/z=0
tính : A=yz/(x^2+2yz)+xz/(y^2+2xz)+xy/(z^2+2xy)
Cho x y z đôi một khác nhau và 1/x+1/y+1/z=0
Tính giá trị A = yz/x^2+2yz + xz/y^2+2xz + xy/z^2+2xy
Cho: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)(x,y,z khác 0). Tính \(\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}\)
Cho x,y,z là các số khác 0 và đôi một khác nhau thỏa mãn 1/x +1/y + 1/z =0
Tính giá trị biểu thức A=yz/(x^2 +2yz) + xz/(y^2+ 2xz) + xy/(z^2+ 2xy)
Cho 1/x + 1/y + 1/z =0 Tính A = yz/x^2 + xz/y^2 + xy/z^2