Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
luong quang tuan

Cho 1/x+1/y+1/z=0 (x; y; z khác 0). Chứng minh rằng: 1/x^2+1/y^2+1/z^2=3/xyz

Phạm Thành Đông
26 tháng 6 2021 lúc 9:16

\(\frac{1}{x}=a;\frac{1}{y}=b;\frac{1}{z}=c\left(x,y,z\ne0\right)\).

Ta có:

\(a+b+c=0\).

Ta phải chứng minh rằng nếu \(a+b+c=0\)thì \(a^3+b^3+c^3=3abc\).

Thật vậy, xét hiệu  \(A=a^3+b^3+c^3-3abc\)với \(a+b+c=0\).

\(A=\left(a+b\right)^3-3ab\left(a+b\right)-3abc+c^3\).

\(A=\left[\left(a+b\right)^3+c^3\right]-\left[3ab\left(a+b\right)+3abc\right]\).

\(A=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]\)\(-3ab\left(a+b+c\right)\).

\(A=\left(a+b+c\right)\left(a^2+2ab+b^2-ab-ac+c^2-3ab\right)\).

\(A=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\).

\(A=0\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)(vì \(a+b+c=0\)).

Do đó \(a^3+b^3+c^3-3abc=0\).

\(\Rightarrow a^3+b^3+c^3=3abc\)với \(a+b+c=0\)

\(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\)với \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)(điều phải chứng minh).

Khách vãng lai đã xóa

Các câu hỏi tương tự
nguyễn hữu kim
Xem chi tiết
nguyễn hữu kim
Xem chi tiết
Thuy Duong Nguyen Ngoc
Xem chi tiết
Bình Lê Thanh
Xem chi tiết
vũ thị ánh dương
Xem chi tiết
Phan Hồng Quân
Xem chi tiết
LÂM 29
Xem chi tiết
Chien
Xem chi tiết
Phạm Long Khánh
Xem chi tiết