Từ giả thiết ta có: (a+1)(b+1)(c+1) >=0 và (1-a)(1-b)(1-c) >=0
=> (a+1)(b+1)(c+1) +(1-a)(1-b)(1-c) >=0
Rút gọn ta có: -2((ab+bc+ca) =<2
Mặt khác (a+b+c)2=a2+b2+c2+2(ab+bc+ca)=0
=> a2+b2+c2=-2(ab+bc+ca)
=> a2+b2+c2 =<2
Dấu "=" xảy ra <=> a=0; b=1; c=-1